

Journal of Nonlinear Analysis and Optimization

Vol. 12, No. 2, (2021),

ISSN : 1906-9685

BREAKING BARRIERS: ENHANCING SEARCH PERFORMANCE WITH AN IDEAL

PACKET CLASSIFICATION ALGORITHM

#1Mrs.BHEERAM SANKEERTHANA, Assistant Professor

#2Mr.JANGA RAVI CHANDER, Assistant Professor

Department of Computer Science and Engineering,

SREE CHAITANYA INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR, TS.

ABSTRACT-

Several methods were explored in an effort to

efficiently categorize packets according to their

accessibility. As part of our research, we

examined several decision tree

implementations, each of which was used to

classify packets into one of several categories.

It was the proximity to an ideal choice that was

used to determine the decision tree's initial field

and number of cuts. This increased the amount

of time and storage space required for the

search. To determine the optimal pair and

optimal multi-pair for each packet, algorithms

exist that make use of decision trees.

With the introduction of cutting-edge network

applications, multi-match packet classification

has

taken on greater significance. In this situation,

in addition to the most crucial rule, you should

return the entire set of matched results. Finding

effective classification methods is crucial for

addressing the challenges associated with this

process. We've developed a new method,

called "boundary cutting," that efficiently sorts

packets. Important matching is required by

most conventional applications that categorize

packets.

There are two main benefits to the

demonstrated

approach. The proposed algorithm improves

upon prior methods by using rule boundaries

rather than fixed gaps in its border-cutting

functionality. This has significant implications

for the required amount of memory. Cutting

boundaries makes it more difficult for internal

nodes to process information, but binary search

is superior at it.

Keywords: Decision tree algorithms, Packet

classification, Boundary cutting, Priority

matching, Binary search.

1. INTRODUCTION:

Servers connected to the Internet have an

advantage in providing certain services due to

their ability to categorize data packets. Since

there is a growing demand for worm detection

and network intrusion detection systems,

multimatch classification has attracted the

attention of many researchers. A chip with a

high bandwidth but low on-chip memory is

ideal for storing the rule library for packet

classification. This will increase the chip's off-

chip memory at the expense of performance.

The memory requirements for creating a packet

sorting table are critical information to have.

The effectiveness of packet classification

algorithms is primarily evaluated by how

quickly they process data. This is due to the fact

that at wire speed, each incoming packet must

be categorized. In order to determine the type

of packet, the chip must make a number of

memory calls outside of the chip.

Our primary objective is to explore different

ways of using decision trees to classify packets

into distinct categories. Like in Hi Cuts and

Hyper Cuts, the initial decision trees' field and

number of cuts were chosen with the best

possible match in mind. This increased the

amount of time and storage space required for

the search. In order for this method to be

222 JNAO Vol. 12, No. 2, (2021)

effective, we must first process it using intricate

heuristics that are associated with each set of

rules. Since the rule set is kept off-chip and the

internal nodes of the tree are kept on-chip, the

decision tree method can search very quickly.

Using a decision tree, it is clear which packets

need to be prioritized for sorting based on

which matches are most critical. Newer

network applications necessitate a method for

categorizing packets into multiple subsets,

while simultaneously displaying all matching

results and the most crucial matching rule.

Problems with categorizing data require robust

and capable computer programs to be

developed as a solution. In our research, we

developed a novel boundary-cutting-based

method for clustering packets. By strategically

placing each rule, it ensures that each rule can

efficiently remove the required amount of

space. This article demonstrates a novel

method for rapidly sorting packets into groups

via a slicing operation. By analyzing the

borders of the room, the system determines the

precise region covered by each rule. As a

result, a foreseen method of cutting is more

precise than intricate algorithms. It also uses

less memory and operates quicker.

The number of rules that apply to a subspace

cannot be reduced by partitioning due to the

fact that Hi Cuts and Hyper Cuts operate on a

constant interval. The boundary cutting (BC)

algorithm is demonstrated in our research. It's a

tried-and-true method for making clean cuts at

the edge of each rule. When dividing a prefix

plane along rule boundaries, both the beginning

and ending edges of each rule are considered.

However, it doesn't matter which way you go

about it; all decision tree methods care about is

which subspace an input packet resides in. In

the first step, all of the rule fields that

correspond to the subspace identified by the

headers of the input data are matched.

Different cuts are made at various times at each

internal node of the border cutting decision

tree. In order to determine which branch to

take given an input, a binary search must be

performed at each node in the tree.

2. OVERVIEW OF EARLIER DECISION

TREE AL- GORITHMS:

Assuming k = 1, rule Rk should be applied to

packet P. All header fields must be set to Fd if

d = 1, yielding a False result. In Rk, how

many fields are available for use? Assuming N

rules and D fields, we get the following

expression: (d) N = D * N. Only the most

crucial rule is returned when multiple rules are

equally applicable to a packet classification

problem. It is possible to use multiple matching

rules when sorting packets into categories.

Most sets of rules are broken down into five

sections. The first two fields, which concern

the source and destination prefixes, need to be

matched. We'll dive deeper into the topic of

sending and receiving ports that are compatible

in the next two sections. The number of cuts

required for a given field is determined by a

comparison to the protocol-dependent constant

field.

The binth is a set of rules used to configure the

leaf nodes of a decision tree. The rules for

conducting a linear search are as follows.

Exactly what is a regulation, then? A rule is the

region in a two-dimensional (2D) plane

containing the first two prefix fields. which

regions of the prefix plane are covered by each

rule in a given 2-dimensional rule set. The

rule's longest field length (W in IPv4) is

displayed, and the corresponding space is

included in the rule.

3. EXISTING SYSTEM:

Our primary objective was to explore various

applications of decision trees for logically

clustering data packets. If the decision tree

process is broken up into two stages, it can be

completed much more quickly. On-chip

memory is used for storing the internal tree

nodes, while off-chip memory houses a

massive library of rules. In addition to

identifying the most crucial match, choice tree

algorithms can determine the most effective

way to cluster multiple packet matches.

Traditional decision tree methods like Hi Cuts

and Hyper Cuts used a best-in-class decision to

determine the field and number of cuts. Both

the search time and storage requirements are

reduced. There is preparation required before

attempting to use this technique. This

necessitates the development of intricate

heuristics for each distinct set of rules.

4. DISADVANTAGES:

Assembling the pre-processing calculations

takes a lot of time and resources.

Building decision trees is a memory-intensive

process. Algorithms will be expanded to

223 JNAO Vol. 12, No. 2, (2021)

accommodate more rules sets as a workaround.

The rules are cut at a predetermined time

regardless of the amount of land each rule

exceeds. This method is therefore obsolete.

5. PROPOSED SYSTEM:

➢ This paper demonstrates a novel and

practical method for organizing these

packets by cutting their perimeters. The

number of rules is reduced by the proposed

method because each rule addresses a

different topic.

➢ The packet classification table of the

proposed algorithm can be predicted with

reasonable accuracy. That is to say, unlike

previous decision tree methods, it does not

require the use of complex heuristics

6. ADVANTAGES OF PROPOSED

SYSTEM:

➢ The proposed algorithm improves upon

prior methods by using rule boundaries

rather than set boundaries to perform

border cutting. Less RAM is required as a

result.

➢ Binary search is effective for searching at

internal nodes, which BC cannot index.

7. IMPLEMENTATION:

Building a BC Decision Tree:

Rules' beginning and ending points provide

natural divisions in a prefix plane. However, it

makes no difference which you pick because

decision tree methods typically seek out a

subspace that an input packet is in. Decision

tree leaves are used to compare input file

headers against rules for a specific subspace.

Searching in the Boundary Cutting:

The BC decision tree has no predetermined

time intervals between cuts at any given node.

In order to locate the correct edge for each key,

a binary search must be performed at each node

within the tree. The pointer to the daughter

node is retained if the value you enter is greater

than or equal to the value you are searching for.

This can be seen by analyzing an incoming

packet with the following headers: (000110,

111100, 19, 23, TCP). A binary search is

performed on the input's header at the root

node.

Header 000110 is compared to the middle entry

010000 in the parent node. Since the size of

the input has been reduced, the search is

constrained to a narrower region, and only the

input and the entry 000100 are examined.

Since the input has expanded, the child

indicator on the second edge is recalled, and the

search is conducted among a larger set of

candidates. The input appears smaller when

compared to the value 001000, but the smaller

value does not contain any records. Since a

signal was located, the search has shifted its

attention to the second edge. The binary search

algorithm chooses the second-to-last edge for

the 111100 header. Rules in the leaf node are

discovered using linear search, just as they are

with HiCuts and HyperCuts.

Selective Boundary Cutting:

It improves the efficiency with which the BC

algorithm can be used in this application.

Decision trees, including the BC algorithm, use

binth to determine whether or not a given area

is a leaf node. An "internal node" is a node that

has more rules than binth, hence the name. If

so, we call it a leaf node. The BC algorithm

selects a subspace as an internal node, and the

cutting lines within that subspace serve as the

leading edges of the rules being applied. Let's

discuss an innovative application of the binth

for modifying or erasing the rule's limit at an

internal node. When the number of rules in a

partition reaches the binth level, the better

framework prevents any of those rules from

crossing over to the other partition.

Data Structure:

There are two ways to store rule sets in decision

trees. The first approach contrasts rule tables

with decision trees. Each rule will only be

stored in the rule table once. But in a decision

tree, each leaf node is connected to the rule

table that governs it. Each leaf on the binth has

a corresponding rule point requirement, which

is listed here. When searching for the optimal

rule for a packet or the complete set of matched

rules, more memory accesses are required to

retrieve the rule table. This is so because you

can easily count the number of rules in a node's

leaves. The second method employs leaf nodes

as storage locations for rules.

This reduces the time it takes for the search to

complete because fewer rule tables need to be

consulted. However, because the rules are

being used twice, significantly more memory is

being consumed. It is more important to

consider search speed than memory limits in

this simulation if you want to keep rules on leaf

224 JNAO Vol. 12, No. 2, (2021)

nodes.

8. RELATED WORK:

The concept of packet classification is

fundamental to many Internet services,

including traffic monitoring and firewall packet

filtering. Businesses typically use ternary

content addressable memories (TCAMs) to

partition fast packets into subsets. TCAMs

simultaneously check each message against all

three rules and sort them in real time. Because

packet categorization rules frequently refer to

fields as ranges, converting them to TCAM-

compatible rules can result in a large number of

rules, a problem known as "range expansion."

If TCAMs have plenty of space for data, then

this shouldn't be an issue. TCAMs, alas, have

a very limited capacity for energy storage.

Additionally, the stricter the rules are, the more

energy and heat are generated.

Year after year, new services are introduced to

the Internet, and new rules are added to packet

analyzers. This research seeks to answer the

question of how to create a packet classifier

with the same semantics as an existing one

while using as few TCAM records as possible.

The TCAM Razor is discussed in this research.

It's a great boon, resource, and time saver.

TCAMs, or thermal control and monitoring

devices, are extremely pricey. TCAMs have a

cost that is 30 times higher than that of double-

data-rate SRAMs for each stored bit. On the

other hand, for a

You may need 2(L-1) TCAM entries if your

port range field is only bits long. This

necessitates exploring alternative algorithmic

approaches. In th

is case, k = 1 indicates that rule Rk matches

packet P. Packet classification describes this

process. If the value of d is 1, and every

header field is Fd, then the result is False. If

we have N rules and D fields, then d will tell us

how many fields are in Rk. When there is only

one rule that fits a given packet classification

problem, the most relevant rule is returned.

However, in a packet classification problem,

more than one rule may apply. In that case, a

set of all applicable rules is provided.

Five categories are typical for rule sets. Source

and destination prefixes in the first two fields

must be matched. We'll dive deeper into the

topic of sending and receiving ports that are

compatible in the next two sections. To

determine the number of cuts required for the

target variable, a perfect match is required for

the protocol-dependent, unchanging variable.

The binth is a set of rules used to configure the

leaf nodes of a decision tree. The rules for

conducting a linear search are as follows.

HiCuts :

Each rule generates a five-dimensional hypercube

in the given space. The header of each data packet

specifies a location within that region. It employs

a back-and-forth procedure to segment the space

into subspaces along each dimension individually.

The smaller number of intersecting rule

hypercubes in each subspace makes this possible.

Increasing the number of cuts in HiCuts allows

you to incorporate a greater depth of information

into your decision tree. In contrast, clearing out

some cuts slows down the investigation. Finding

a happy medium between the need for storage and

the need for fast search is challenging. To

optimize the heuristics, the HiCuts technique

adjusts two parameters: a space factor (spfac) and

a threshold (binth). Both the amount of memory

used and the depth of the decision tree are

controlled by these variables.

Fig:-HiCuts algorithm.

Exactly what is a regulation, then? A rule is

the region in a two-dimensional (2D) plane

containing the first two prefix fields. Each

rule in the provided 2-dimensional example

set addresses the prefix plane. Where W is

the largest field length (32 in IPv4), F2, and

field lengths (i,j), the rule applies to an area of

2(w-i) * 2(w-j).

Hyper Cuts:

When deciding on cut dimensions, the Hyper

Cuts algorithm considers many fields

simultaneously, while the HiCuts approach

considers only a single field at a time. The

algorithmic decision tree generated by the

Hyper Cut method using the same data. The

value of the binth is set at 1.5, and the value of

the space is set at 3. In this case, "and" is used

in conjunction with "fields" to make a deep cut.

Bitwise combinations of 00, 10, 01, and 11

225 JNAO Vol. 12, No. 2, (2021)

form the edges of the root node. One bit from

the first field and one bit from the second field

make up each possible combination.

Fig:-hyper cuts

9.DECISION TREE

CHARACTERISTICS:

In the second part, we constructed decision trees

with a lower bound of binth using the BC, SBC,

HiCuts, and Hyper Cuts algorithms. Cutting

terminates when the number of rules in a

subspace falls below the minimum threshold

binth. The effectiveness of algorithms like

HiCuts and Hyper Cuts depends, in part, on how

much room there is to work with. When a

decision tree isn't optimized, the leaf nodes only

contain binth rules. Rules that apply to all

children of a given subtree are identified by

working our way up the tree from the roots.

Then, the subtree's root receives these rules.

Repeating this procedure until the initial node of

the decision tree is reached is the norm. Here,

the binth value ensures that the cumulative set

of rules observed at intermediate nodes along

the path from the root to a leaf node is always

preserved. The search speed is barely affected

by the optimization, but there are significantly

more instances of duplicate rules.\

Fig:-DATA STRUCTURES OF

INTERNAL NODES IN EACH DECISION

TREE

Fig:-CHARACTERISTICS OF RULE

SETS IN THE NUMBER AND RATE OF

WILDCARDS

10. CONCLUSIONS:

The boundary cutting algorithm and clustering

are discussed in this article. The dataset is

divided into subsets during testing based on

their degree of similarity to one another.

These groups are then used to determine

whether or not a given packet poses a threat.

Since it cuts along the edge of the space, the

boundary cutting algorithm is more precise

than clustering.

REFERENCES:

1. H. J. Chao, “Next generation routers,”

Proc. IEEE, vol. 90, no. 9, pp.1518–1588, Sep.

2002.

2. A. X. Liu, C.R.Meiners, andE.Torng,

“TCAMrazor: A systematic approach towards

minimizing packet classi- fiers in TCAMs,”

IEEE/ACM Trans. Netw., vol. 18, no. 2, pp.

490–500, Apr. 2010.

3. C. R. Meiners, A. X. Liu, and E. Torng,

“Topological transformation approaches to

TCAM-based packet classification,”

IEEE/ACM Trans. Netw., vol. 19, no. 1, pp.

237–250, Feb. 2011.

4. F. Yu and T. V. Lakshnam, “Efficient

multimatch packet classification and lookup

with TCAM,” IEEE Mi- cro, vol. 25, no. 1, pp.

50–59, Jan. –Feb. 2005.

5. F. Yu, T. V. Lakshman, M. A. Motoyama,

and R. H. Katz, “Efficient multimatch packet

classification for network security

applications,” IEEE J. Sel. Areas Com- mun.,

vol. 24, no. 10, pp. 1805–1816, Oct. 2006.

6. H. Yu and R. Mahapatra, “A memory-

efficient hash- ing by multi-predicate bloom

filters for packet classifi- cation,” in Proc. IEEE

INFOCOM, 2008, pp. 2467–2475.

7. H. Song and J. W. Lockwood, “Efficient

packet clas- sification for network intrusion

detection using FPGA,” in Proc. ACM SIGDA

FPGA, 2005, pp. 238–245.

8. P. Gupta and N. Mckeown, “Classification

using hi- erarchical intelligent cuttings,” IEEE

Micro, vol. 20, no. 1, pp. 34–41, Jan.–Feb.

2000.

9. S. Singh, F. Baboescu, G. Varghese, and J.

Wang, “Packet classification using

multidimensional cutting,” in Proc.

SIGCOMM, 2003, pp. 213–224.

10. P. Gupta and N. Mckeown, “Algorithms

for pack- et classification,” IEEE Netw., vol.

15, no. 2, pp. 24–32, Mar.–Apr. 2001

